電流 $I$ は
\begin{eqnarray}
I &=& \frac{E}
{R_{1}+j\omega L + \frac{R_{2}\frac{1}{j\omega C}}
{R_{2}+\frac{1}{j\omega C}}
}= \frac{E}
{R_{1}+j\omega L + \frac{R_{2}}
{1+ j\omega CR_{2}}
}\nonumber\\
&=&= \frac{E(1+ j\omega CR_{2})}
{(R_{1}+j\omega L)(1+ j\omega CR_{2}) + R_{2}}\nonumber\\
&=& \frac{
E(1+ j\omega CR_{2})
}
{
(R_{1}+R_{2}-\omega^{2}LCR_{2})
+j\omega (L + CR_{1}R_{2})
}\nonumber\\
\end{eqnarray}
となる。よって,大きさは
\begin{eqnarray}
|I| &=&
|E|\sqrt{
\frac{1+ (\omega CR_{2})^{2}
}{
(R_{1}+R_{2}-\omega^{2}LCR_{2})^{2}
+\omega^{2} (L + CR_{1}R_{2})^{2}
}}\nonumber\\
\end{eqnarray}
となる。
$\omega\rightarrow \infty$ のとき
\begin{eqnarray}
|I|&=& \lim_{\omega\rightarrow \infty}
|E|\sqrt{
\frac{1+ (\omega CR_{2})^{2}
}
{
(R_{1}+R_{2}-\omega^{2}LCR_{2})^{2}
+\omega^{2} (L + CR_{1}R_{2})^{2}
}}\nonumber\\
&=&
\lim_{\omega\rightarrow \infty}
|E|\sqrt{
\frac{(\omega CR_{2})^{2}
}
{(-\omega^{2}LCR_{2})^{2}
+\omega^{2} (L + CR_{1}R_{2})^{2}
}}\nonumber\\
&=&\lim_{\omega\rightarrow \infty}
|E|\sqrt{
\frac{(\omega CR_{2})^{2}
}{
\omega^{4}(LCR_{2})^{2}
+\omega^{2} (L + CR_{1}R_{2})^{2}
}}\nonumber\\
&=& \lim_{\omega\rightarrow \infty}
|E|\sqrt{
\frac{\omega^{2} (CR_{2})^{2}
}
{\omega^{4}(LCR_{2})^{2}
}}\nonumber\\
&=&
\lim_{\omega\rightarrow \infty}
|E|\sqrt{
\frac{1
}{
\omega^{2}L^{2}
}}\nonumber\\
&=& \lim_{\omega\rightarrow \infty}
|E|\frac{1}{\omega L}
= \lim_{\omega\rightarrow \infty}
\frac{1}{\omega}\nonumber\\
&=&\underline{0} ~\rm [A]
\end{eqnarray}
$\omega = 0$ のとき
\begin{eqnarray}
|I| &=& |E|\sqrt{
\frac{1+0}
{(R_{1}+R_{2}-0)^{2}+0
}}\nonumber\\
&=& |E|\frac{1}
{R_{1}+R_{2}}\nonumber\\
&=& \frac{110}{10+1} = \underline{10}
~\rm [A]
\end{eqnarray}
となる。