$(1)$
\begin{align}
dx=d_1+\frac{d_2-d_1}{l}x\\
\end{align}
$(2)$
\begin{align}
d\phi&=\frac{Tdx}{GI_p}\\
&=\frac{32Tdx}{G\pi dx^4}\\
&=\frac{32T}{G\pi}\left(d_1+\frac{d_2-d_1}{l}x\right)^{-4}dx
\end{align}
$(3)$
\begin{align}
\phi&=\int_0^ld\phi\\
&=\frac{32T}{G\pi}\int_0^l\left(d_1+\frac{d_2-d_1}{l}x\right)^{-4}dx\\
&=\frac{32T}{G\pi}\left[-\frac{l}{3\left(d_2-d_1\right)}\left(d_1+\frac{d_2-d_1}{l}x\right)^{-3}\right]_0^l\\
&=\frac{32T}{G\pi}\frac{l\left({d_2}^3-{d_1}^3\right)}{3{d_2}^3{d_1}^3\left(d_2-d_1\right)}
\end{align}