運動方程式
\[
\begin{align} \
& \left\{\begin{array}{cc}
m_1 x_1= - k_1 x_1 - k_2 x_1 + k_2 x_2 \\
m_2 x_2= - k_2 x_1 + k_3 x_3 - k_2 x_2 - k_3 x_2 \\
m_3 x_3= - k_3 x_3 - k_4 x_1 - k_3 x_2
\end{array}\right.
\\
\\
&\left\{\begin{array}{cc}
m_1 x_1 + \left( k_1 + k_2 \right) x_1 + k_2 x_2 =0\\
- k_2 x_1 + m_2 x_2 - \left( k_2 + k_3 \right) x_2 - k_3 x_3 =0 \\
- k_3 x_2 + m_3 x_3 + \left( k_3 + k_4 \right) x_3 =0
\end{array}\right.
\\
\\
& \left. \begin{array}{cc}
x_1 = X_1 \sin \omega T \\
x_2 = X_2 \sin \omega T \\
x_3 = X_3 \sin \omega T
\end{array}\right)
とおくと
\left(\begin{array}{cc}
x_1 = - X_1 \omega ^2 \sin \omega T \\
x_2 = - X_2 \omega ^2 \sin \omega T \\
x_3 = - X_3 \omega ^2 \sin \omega T
\end{array}\right.
\end{align}
\]
運動方程式に代入する
\[
\begin{align} \
& \left\{\begin{array}{cc}
m_1 \left( -x_1 \omega ^2 \right) + \left( k_1 + k_2 \right)=0 \\
- k_2 X_1 +m_2 \left( -X_2 \omega ^2 \right) + \left( k_2 + k_3 \right) - k_2 X_3=0 \\
- k_3 X_2 +m_3 \left( - X_3 \omega ^2 \right) + \left( k_3 + k_4 \right)X_3=0
\end{array}\right.
\\
\\
&\left\{\begin{array}{cc}
\left\{ - m_1 \omega ^2 + k_1 +k_2 \right) X_1 - k_2 X_2 =0 \\
- k_2 X_1 \left( +m_2 \omega ^2 + k_1 + k_3 \right) + \left( k_2 + k_3 \right) - k_2 X_3=0 \\
- k_3 X_2 +m_3 \left( - m_3 \omega ^2 + k_3 + k_4 \right) X_3=0
\end{array}\right.
\end{align}
\]
$
m_1 = m_2 = m_3 = m, \ k_1 = k_2 = k_3 = k_4 = k$なので,
\[
\left|\begin{array}{cccc}
-m \omega ^2 + 2 k & -k & 0
\\
-k & -m \omega ^2 + 2 k & -k
\\
0 & -k & -m \omega ^2 + 2 k
\end{array}\right|
=0
\]
\[
\left( -m \omega ^2 + 2 k\right)^3 - k^2 \left( -m \omega ^2 + 2k\right) - \left( -m \omega ^2 + 2k\right) k^2 =0
\\
\left( -m \omega ^2 + 2 k\right)^3 - 2 k^2 \left( -m \omega ^2 + 2k\right) =0
\\
\left( -m \omega ^2 + 2 k\right) \left\{ \left( -m \omega ^2 + 2k\right)^2 - 2k^2 \right\} =0
\]
$-m \omega ^2 + 2 k =0$より,
\[
\begin{align}
\omega
&= \sqrt \frac{2 k}{m}\\
&= \sqrt \frac{2 \times 50 \times 10^3 \,\rm{N/m}}{3\,\rm{kg}} \\
&= 182.5\,\rm{rad/s}
\end{align}
\]
$\left( -m \omega ^2 + 2 k^2 \right)^2 -2 k^2 =0$より,
\[
m^2 \omega ^4 - 2 m \omega ^2 \times 2 k +4 k^2 - 2 k^2=0 \\
m^2 \omega ^4 - 4 m \omega ^2 k + 2 k^2=0 \\
\begin{align}
\omega ^2
&= \frac{4 m k \pm \sqrt {16 m^2 k^2-4 m^2 \times 2 k^2} }{2 m^2} \\
& = \frac{4 m k \pm \sqrt {8 m^2 k^2}}{2m^2} \\
& = \left( 2 \pm \sqrt 2 \right) \frac{k}{m} \\
\omega
& = \sqrt{2 \pm \sqrt 2} \cdot \sqrt \frac{k}{m} \\
& = \sqrt{2 \pm \sqrt 2} \cdot \sqrt \frac{50 \times 10^3\,\rm{N/m}}{3 \,\rm{kg}} \\
& = 238.5\,\rm{rad/s}, \ 98.80\,\rm{rad/s}
\end{align}
\]
\[
\begin{align}
\therefore \
&\omega _1=98.8\,\rm{rad/s}\\
&\omega _2=183\,\rm{rad/s}\\
&\omega _3=239\,\rm{rad/s}
\end{align}
\]