$(1)$
\[
p\cdot dA-\left(p+\frac{\partial p}{\partial y} dy \right)dA-\rho \cdot dA\cdot dy\cdot g=0\\
\frac{\partial p}{\partial y}dy = -\rho \cdot dy \cdot g\\
\therefore
\frac{\partial p}{\partial y} = - \rho g
\]
$(2)$
\[
p\cdot dA \cdot dr \cdot r\omega^2+p\cdot dA- \left(p+\frac{\partial p}{\partial r}dr \right)=0\\
\rho \cdot dr \cdot r\omega^2- \frac{\partial p}{\partial r}dr=0\\
\therefore
\frac{\partial p}{\partial r}=\rho r \omega^2
\]
$(3)$
\[
dp=\left(\frac{\partial p}{\partial r} \right)dr + \left(\frac{\partial p}{\partial y} \right)dy\\
dp=\rho r \omega^2\cdot dr+\rho g \cdot dy\\
\]
液面では$dp=0$だから,液面の微分方程式は
\[
\rho g \cdot dy=\rho r \omega^2\cdot dr
\]
\[
\frac{\partial p}{\partial r}=\frac{r \omega^2}{g}
\]
両辺を積分して
\[
y=\frac{\omega^2 r^2}{2g}+C
\]
ここで$r=0$で$y=0$だから,
\[
C=0
\]
\[\therefore
y=\frac{\omega^2 r^2}{2g}
\]